Current State Analysis: Data Quality

Vanessa   Lam
Vanessa Lam Director, BRSdata Read Author Bio || Read All Articles by Vanessa Lam

This is the second in a series of articles taking a deep dive on how to do a Current State Analysis on your data. This article will focus on Data Quality: what it is, why it is important, and what questions to ask to determine its current state.

The questions are organized by stakeholder group to facilitate usability; hopefully you can use this as a template to start your Current State Analysis journey. A few definitions before we begin — note that these groups are not mutually exclusive:

People Who Input Data: These are people who collect and/or input data into the system. For example, salespeople inputting their sales numbers, or survey creators.

People Who Manipulate and Analyze Data: These are people who organize the data and create analyses. This includes Data Engineers, Business Intelligence Professionals, and Data Analysts.

People Who Make Decisions Based on Data: These are the people who use the data to make decisions. This may be a sales manager deciding where to invest resources, a product manager understanding product use demographics, or an executive trying to cut costs.

What Is Data Quality?

Data quality is a measure of the condition of your data, including accuracy, consistency, and completeness. Data quality can be affected in any part of the process, from collection to ETL to analysis. Accuracy refers to how well your data reflects the truth while consistency refers to how well individual data elements match each other. An example of accuracy and consistency in data collection is when a Sales Representative fills out their sales region (e.g., Pacific Northwest). If the input is a manual text field, it is possible for them to spell the region incorrectly (Pafic Northwest) or even capitalize the region incorrectly (pacific northwest). This is a failure of data consistency. A possible correction here would be to supply a dropdown list of the possible regions (e.g., Pacific Northwest, Midwest, South, East). However, this scenario still provides opportunities for inaccuracy in choosing the incorrect region. An example of incomplete data here would be the Sales Representative leaving this field blank or not filling out the sales record entirely.

Potential solutions to these issues could be making the Region field mandatory or even pre-filling the field if Sales Representatives are assigned to specific regions. However, be aware that putting these rules on data collection may slow down data collection or even disincentivize people from completing forms if they think that it is too difficult or restrictive. When assessing data quality rules, it is important to evaluate whether guardrails and processes can be added to make positive change, or if the restrictions will cause unintentional side-effects.

Why Is Data Quality Important?

Good data quality is essential in order to know that insights drawn from the data can be trusted. Most analysts have the experience of their manager questioning the numbers from the data, especially if they have some anecdotal knowledge that implies that the data is completely incorrect. Better data quality will reduce the number of times that this happens as the data will be more accurate and complete, meaning that it is a better reflection of the truth. In the cases where there are still disagreements, they may be more substantive and provide opportunities to talk about where anecdotal evidence and collected data may differ.

Questions to Determine Current State of Data Quality

To Those Who Input Data

These questions are designed to better understand the guardrails around data collection. It is important for data to have strong validations, such as choosing from a dropdown list instead of allowing free text; however, be aware that this could backfire if the validations prevent accurate data entry (for example, missing categories in a dropdown) or make it too difficult to fill out (long forms with many mandatory fields can make a form unappealing to fill out). Often, data quality issues are rooted in poor data collection.

  • What is your process for inputting data?

  • Are there specific fields for inputting commonly-collected information, or is it largely free-text?

  • Are there selection options for appropriate fields? (e.g., a dropdown with "True" or "False" selections, or a free text field where you can type "True" or "False")

  • Are there automatic or pre-loaded values in the fields? Are you typically using the pre-loaded value, or do you frequently need to change it?

  • What is your biggest frustration when inputting data?

To Those Who Manipulate and Analyze Data

These questions are designed to understand how the data looks to someone who is in charge of cleaning, understanding, and verifying the numbers to be presented to business stakeholders. They are often the ones who feel most impacted by poor data quality and therefore likely have a good idea of where the data is weak.

  • When doing analyses, how confident do you feel about the outcome based on the data?

  • Do you feel like you need to put caveats on your data based on low confidence intervals?

  • Are there data fields that are being used for multiple purposes? Are there data fields that still exist in the data but everyone says to avoid?

To Those Who Make Decisions Based on Data

These questions are designed for people who are using data to make decisions. Often they are not the ones who have done the analysis themselves, so they may not know the intricacies of the data as well. However, they are usually keenly aware of the business implications of their decisions and have a good sense of what aggregate numbers make sense. For example, a sales executive will likely have a good idea if the number presented is approximately correct based on their experience with the industry, company, and knowledge of their sales representatives. It is important to hear their opinion because ultimately these are the customers of the data. If they aren't happy with the quality, then some changes may need to take place.

  • Do you find yourself seeing the data and overriding data-backed decisions because you don't think that what you're reading is a reflection of reality?

  • What parts of the data are you confident in? What parts are you concerned by?


Data quality is a bedrock of your data systems. Without good quality data, analyses cannot be trusted, decisions cannot be made with data, and eventually people will stop relying on data altogether. Before attempting to implement a strong data ecosystem, it is important to have a plan to improve data quality throughout the organization, from data collection and data processes to analyses.

This article is the second in a series discussing the important considerations when assessing your Current State of Data. Follow along for the next article about Data Freshness — measuring whether the data is up to date and reliable!

# # #

Standard citation for this article:

citations icon
Vanessa Lam, "Current State Analysis: Data Quality" Business Rules Journal, Vol. 22, No. 8, (Aug. 2021)

About our Contributor:

Vanessa   Lam
Vanessa Lam Director, BRSdata

As Director of BRSdata, Vanessa Lam created a division within Business Rule Solutions (BRS) to focus on data culture, data accountability, and business intelligence.

Vanessa specializes in building data-driven organizations where operations and leadership understand and trust the data, treat data as a resource, and use data to make day-to-day and strategic decisions.

Previously, she worked at Mastercard as a Manager of Business Insight and Productivity and Optoro as a Manager of Business Intelligence. In these roles, she created educational tools for the organization, fostered data communities, and ensured people used data responsibly.

Ms. Lam's popular articles on data quality and data culture are published regularly in the Business Rules Journal and TDAN (The Data Administration Newsletter). She is a frequent speaker at Enterprise Data World, Building Business Capability Conference, Tableau User Group, and Predictive Analytics World.

She has a Masters of Computer and Information Technology from the University of Pennsylvania and a BSc in Economics from the Wharton School. She was recently named a top influencer to watch in 2021 by IIBA. You can follow her at @Big_On_Data on Twitter.

Read All Articles by Vanessa Lam
The BRSolutions Professional Training Suite

BRSolutions Professional Training Suite

All About Concepts, Policies, Rules, Decisions & Requirements
We want to share some insights with you that will positively rock your world. They will absolutely change the way you think and go about your work. We would like to give you high-leverage opportunities to add value to your initiatives, and give you innovative new techniques for developing great business solutions.